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Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2
ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j.
Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): „Kto przywłaszcza sobie autorstwo
albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu
albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności
albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszech-
nia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji ory-
ginalnej albo w postaci opracowania, artystycznego wykonania albo pub-
licznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram
lub nadanie.”, a także uprzedzony o odpowiedzialności dyscyplinarnej na pod-
stawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie
wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): „Za naruszenie przepisów
obowiązujących w uczelni oraz za czyny uchybiające godności studenta stu-
dent ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną
albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «są-
dem koleżeńskim».”, oświadczam, że niniejszą pracę dyplomową wykonałem(-
am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych
niż wymienione w pracy.
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1. Introduction

Currently, every day brings new advances in the world of computer vision. With new al-
gorithms and more processing power than ever, we are able to analyze images faster and with
more confidence. Moreover, the ideas of what we can let to be automatized seem to have no
limits. Both in science and business alike, the quest to bring innovation in computer vision
is recently fueled by deep learning, a subset of machine learning that uses multiple layers of
neural networks arranged together to learn from provided data, achieving levels of correctness
comparable with that of humans.

Such advances would not have been possible if it were not for the abundance of data at
our disposal. Enormous numbers of photos are uploaded every day to the Internet and are later
scraped to fuel deep learning models. At the same time, producers of smartphones advertise
models with cameras supported by Artificial Intelligence to let users take better photos than
before.

New possibilities also appeared with the rise of consumer-level depth sensors embedded
into devices like Kinect. The resulting data are often referred to as RGBD, D standing for depth
information. Incorporating this new modality can be especially beneficial to robotic computer
vision systems as they can learn to operate based on their surroundings’ texture or shape rather
than color. Incorporating color- and light-invariant features could result in better image recog-
nition systems, but also those of semantic segmentation where it is expected to recognize not
only what is on the image, but where exactly it is located. For this type of task, each pixel in the
image needs to be classified.

1.1. Aim

The purpose of this work is to analyze whether including depth information can result in
better results in object recognition and semantic segmentation algorithms using deep learning
and how such information should be incorporated to provide best results.
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1.2. Scope

The presented work encompasses the steps mentioned below:

1. creating a dataset using Intel Euclid camera

2. data preprocessing and labeling images with masks

3. implementation of state-of-the-art architectures for image recognition

4. implementation of state-of-the-art architectures for semantic segmentation

5. investigation and experimentation for incorporating depthmaps into mentioned models

6. comparison and analysis of the results

1.3. Work structure

The work is structured as follows: first, neural networks are briefly introduced with a fo-
cus on convolutional neural networks together with various image-related tasks where they are
found to be suitable. Network architectures useful for each task are also briefly mentioned.
Then, some of the recent advances in image classification are described with the focus on win-
ners of ImageNet competition. Later, two state-of-the-art architectures for semantic segmenta-
tion are given a detailed description.

In the following chapter, depth acquisition means are characterized together with their cur-
rent uses and possibilities to develop applications of depth-sensing further. This chapter con-
tains information on publicly available datasets that contain depth information. The emphasis is
placed on those resources that can be of use in semantic segmentation. Additionally, methods
of incorporating this modality in deep learning are given.

Subsequent chapters are related to the practical part of the thesis. Chapter 5 provides details
on the Intel Euclid device used to gather the images, experiment conditions, and data prepro-
cessing. The next chapters describe deep learning architectures used together with any modi-
fications made along the process and achieved results. Following is a discussion of the results
and conclusion.
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2. Deep learning background

2.1. Artificial neural networks

The initial idea behind artificial neural networks was inspired by that of the electrochemical
activity of neurons, cells that make the brain. In 1943 a neuron’s mathematical model was
proposed that uses a type of simple linear classifier because it can only fire if a certain threshold
is exceeded by neuron’s weighted inputs. This makes a neural network simply a set of units and
it is those units’ properties that characterize network as a whole [1].

In the following years, however, statisticians and Artificial Intelligence developers sought
after other properties of neural networks, such as robustness to noise or distributed learning. At
the same time, more sophisticated models of brain structures were proposed. For those reasons,
it is a bit harder now to find analogies between biology and Artificial Intelligence but the basic
concepts can still be explained with respect to this initial model where each unit of the network
can be expressed as a weighted sum of its inputs with activation function g:

y = g(
n∑

i=0

wixi + b) (2.1)

The activation function is necessary for the network to learn more complex features, ex-
pressed by non-linear functions. Without it, the network would behave like a linear regression
model. Some of the most popular activation functions are:

g(y) =
1

1 + ey
- sigmoid (2.2)

g(y) =
ey − e−y

ey + e−y
- tanh (2.3)

g(y) = max(y, 0) - ReLU (2.4)

g(y) =

x if x > 0

0.01x otherwise
- leaky ReLU (2.5)

The networks are also characterized by the way its units are connected:
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• In a feed-forward network shown in Figure 2.1a units are put into a directed acyclic graph,
that is - the connections can only have one direction. Such networks are stacked in layers
in which neurons in a layer can only be given input from the layer directly before. Layers
not connected to the output are referred to as hidden layers [1]. Multiple fully connected
layers joined in a feed-forward manner are called multi-layer perceptrons.

• Network with nodes connected in such a way that outputs are fed again to their inputs is
referred to as a recurrent network. They are similar to the brain in the sense that they have
short-term memory because the response of the network to the given input is determined
by its initial state. This one, however, might be determined by previous information fed
to the system [1]. A multi-layer version of such networks is shown in Figure 2.1b

(a) Feed-forward network (b) Recurrent network

Fig. 2.1. Examples of types of unit connections in different neural networks

The main field of application for perceptrons would be in organized, tabular data. Thanks to
nonlinear linear activation in the neurons, they spot patterns that would not be linearly separa-
ble otherwise. Recurrent networks, in turn, work best applied to problems related to sequence
prediction. Perceptrons can also achieve decent results in simple computer vision tasks, such as
digits classification, yet they fail to work well on data with a more complex spatial relationship,
like images where input data are related in space. As of now, convolutional neural networks
deal best with image input.

2.2. Convolutional neural networks

The majority of CNNs that are currently in use are made of several "blocks" that are made
of layers of operations such as convolution, activation or normalization. Some of those layers
are explained briefly below, but not all blocks have to use all of them.
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2.2.1. Convolutional layer

Convolutional neural networks (CNNs) are now considered a standard approach when deal-
ing with image classification problem. Their purpose is to learn specific features using small
squared segments of said images. A discrete convolution can be defined as in equation 2.6. Ex-
tending it to two dimensions yields equation 2.7, where x is an input image and K is the chosen
kernel. A convolution layer is simply a convolution of an input image with a defined kernel or
filter K that outputs a feature map. If convolution is done without padding image at the borders,
then such a map will be of a smaller size than its input. To obtain the same dimensions, input
can be padded with zeros. In ConvNets with multiple layers, the initial ones learn more low-
level features as in classical image processing, for example edges, gradient or orientation and
gradually learn more complex features [2]. Usually, ConvLayers are activated with ReLU.

(f ∗ g) =
∞∑

m=−∞

f [m]g[n−m] (2.6)

y[i, j] =
∞∑

m=−∞

∞∑
n=−∞

K[m,n]x[i−m, j −m] (2.7)

where

x – input image

K – kernel, for example K =

1 0 1

0 1 0

1 0 1



2.2.2. Pooling layer

To reduce the dimensionality of the feature map and thus computing time, ConvLayer is usu-
ally followed by spatial downsampling operation also known as pooling layer. Two-dimensional
pooling operation with an element of size n works on image area n× n leaving only one value
from it. Usually, the maximum value of the area is used hence the name max pooling, but there
is no limitation to pool minimum or average values should they provide better results. Pooling
with an element which size is two reduces the feature map by a factor of two [2].

2.2.3. Dropout

To prevent the net from overfitting, dropout layer can be introduced. The dropout rate of
0.5 means that each neuron may be zeroed before passing to the next layer with 0.5 probability.
Thanks to that, each time the network can sample different architecture while sharing weights
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between them [3]. While useful, this technique may require more iterations before the network
converges.

2.2.4. Batch normalization

Another often included layer is batch normalization, which acts as a weak regularizer on
the previous output batch by subtracting the mean and dividing by the standard deviation of the
batch.

2.2.5. Fully connected layer

After several blocks made of the above elements, it is necessary to flatten the last output
into a feature vector and pass it to a fully connected layer, also activated with ReLU. This layer
can learn a non-linear combination of features, that is, in this space it is able to learn to fit a
non-linear function [2].

2.2.6. Loss layer

Finally, it is necessary to define a loss function to support learning and penalize when the
predicted value has deviated from the correct one. Different loss functions should be defined
depending on the task. In binary classification, the sigmoid is typically used:

Sigmoid : S(x) =
ex

ex + 1
(2.8)

In the case of non-binary classification, where the object is predicted to have one out of
N mutually exclusive labels, this is done by ending the model with a layer which weights are
activated with the softmax function, sometimes also a called normalized exponential function.
It expresses the probability distribution over a discrete variable of N options. It can be under-
stood as a generalization of probability distribution representation for a binary variable and is
calculated as shown in equation 2.9. This way output is normalized to be between 0 and 1 while
the sum of probabilities for elements in input vector x is 1 [4].

S(x)i =
exi∑N
j=1 e

xj

for i = 1, ..., N (2.9)
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3. From image classification to image understanding

3.1. Image recognition

Image classification or recognition is the task of extracting such features that allow assigning
the image one or more labels. Input is classified as a whole, and there is no information about
object location. This task appears to be the most widely used application of convolutional neural
networks and indeed, obtained results can be considered state-of-the-art in their category.

In the last couple of years, majority of the breakthroughs in visual recognition comes from
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual competition in
computer vision that emerged on the basis of part of a public dataset called ImageNet [5].

3.1.1. AlexNet

2010 and 2012 winner was AlexNet from Alex Krizhevsky, Ilya Sutshever, and Geoffrey
E. Hinton. The net comprises of five convolutional layers (some followed by max-pooling),
and three fully connected layers. The network also introduces then-recent dropout as a way of
curbing overfitting [3]. Figure 3.1 illustrates AlexNet adapted to share the work over two GPUs
for faster training.

Fig. 3.1. AlexNet architecture split to work on two GPUs [3]
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3.1.2. Inception (GoogLeNet)

Two years later particular version of Inception, GoogLeNet, was presented at ImageNet.
This was a novel approach, breaking with the usual structure of multiple convolutional layers
followed by normalization and pooling. GoogLeNet has twelve times fewer parameters than
AlexNet and yet it was able to deliver better results. This is thanks to the R-CNN approach
that stands for Regions with Convolutional Neural Networks [6]. Inception modules use 1 × 1

convolutions to drastically reduce the number of operations thus allowing to make the whole
network wider and deeper. Such a module, depicted in Figure 3.2 is made of a few convolutional
blocks of a various number of filters that are later concatenated into a filter bank that becomes
the input of the next stage. This idea is inspired by the success of embeddings known from other
deep learning tasks, such as sentiment analysis. An embedding is a form of densely compressed
information about a fairly big part of an image [6].

An inception network is built by stacking such modules and 2 × 2 max-pooling layers to
reduce the grid. GoogLeNet version is made of 22 such modules, while the number of layers in
the whole model is about 100. The network also has extra classifiers on the side. Their loss is
weighted and added to the total loss. This operation aims to support gradient propagation and
to add extra regularization [6].

Fig. 3.2. Inception with dimension reductions [6]
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3.1.3. VGG

VGG (Figure 3.3) is another 2014 ImageNet participant with a sequential structure similar
to the one of AlexNet. There are, however, a few significant differences. Firstly, convolution
filters are very small - 3× 3 with a stride of one and the spatial resolution is preserved through
padding. There are five max-pooling layers spread across the net. Two 3× 3 convolution layers
of stride one are equal in the size of the receptive field to one 5 × 5 operation, yet with two
non-linear activations that result in more discriminative decision [7]. The fully connected part
of the net is made of two layers of 4096 filters, 0.5 dropout and classification layer of 1000
filters.

Fig. 3.3. VGG net, adapted from [7]

3.2. Semantic segmentation

Image classification answers the question: "What’s in the image?", while object detection
tells "Where is it located?". To answer those two questions combined is to perform semantic
segmentation. In this type of task, the model is usually given a label of the size of the image that
masks specific parts of the image according to what is shown there as demonstrated by Figure
3.4. Therefore semantic segmentation attempts to classify each pixel of an image as belonging
to one particular class.

Classification methods mentioned above, while achieving very good results, are unable to
consider the global context of the image. There both convolution and pooling layers result in
shrinking feature maps that later have to be flattened to be passed to fully connected layers. This
is why some new approaches were necessary that would allow upsampling the feature maps
and to replace fully connected layers with some other solution. In many of such experiments,
classification models such as VGG are "reused" as feature extractors. This also has the benefit
of the possibility to apply transfer learning and to reuse training weights from other tasks. A
detailed description of two of such architectures is given below.

D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
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16 3.2. Semantic segmentation

(a) Input image (b) Colored output mask

Fig. 3.4. Input-output pair used for semantic segmentation of an image.

Adapted from [8]

3.2.1. Fully Convolutional Network

The network architecture built solely on convolutional layers was proposed by Evan Shel-
hamer, Jonathan Long, and Trevor Darrell in 2015 on Computer Vision and Pattern Recognition
conference [9] and later, in the updated and extended version in 2017 in Transactions on Pattern
Analysis and Machine Intelligence [10]. It makes use of the advances in image classification
that are later transferred and fine-tuned to pixel-level labeling by replacing dense layers from
classification tasks with crafted convolutional layers.

Architectures mentioned in 3.1 like VGG can be used as feature extractors. They take fixed-
size inputs and consist of many convolutional layers that are followed by fully connected layers
that ignore spatial coordinates when returning output [10]. Instead, Shelhamer, Long, and Darell
dispose of two dense layers of 4096 filters and replace them with two convolutional counterparts
of the same number of filters. Such a network, like its classifying original, can take input of any
size, but the output remains reduced because of subsampling present in feature extracting part
of the net. Further modifications are needed to obtain a map of the same resolution as fed to the
network. The advantage of discarding dense layers is that FCN can work with an input of any
size.

D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
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Feature map can be upsampled with various kinds of interpolation including bilinear, bicubic
or the simplest, nearest neighbor methods, but in no way does this approach allow the network to
learn its upsizing parameters. Ideally, one would want to "revert" convolution operation. This is
possible if we remember that convolution with the kernel can also be explained through matrix
multiplication with vectorized input. 4 × 4 array convoluted without padding with 3 × 3 filter
yields 2× 2 matrix. An equivalent version of this operation takes the input flattened to 16× 1.
Each step of convolution unrolled left to right is also 16 elements long [11]. Four such steps
are needed to traverse our input. This operation, as a result, gives us 4× 16 sparse convolution
matrix C. Its product with 16-dimensional input is of size 4 and can be reshaped to 2× 2. From
here performing the backward operation is as easy as taking transposition C.T and multiplying
it with flattened output [11]. It is worth noting in this approach that convolution filters are not
fixed but rather, as with standard Conv Layers, they are learned and provided a proper activation
function, obtained upsampling is not restricted to being linear [10].The transposed convolution
operation is sometimes referred to as deconvolution or fractionally strode convolution, but the
former term should be used with caution, as per mathematical definition deconvolution is an
inverse operation of convolution and not its transposed form [11].

Going deeper with convolutions enables the network to learn more abstract features, but at
the same time makes it lose the where context in favor of what, as a result, the output of FCN
can be somewhat coarse [9]. To remedy this, the authors propose skips that add together results
of higher layers after upsampling. With this operation, the network becomes a structure of a
directed acyclic graph (DAG). Figure 3.5 provides a better understanding of how skip connec-

tions are handled in FCN based on VGG architecture because this feature extractor provided
the best results. Pool3, pool4 and pool5 are max-pooling layers of VGG. Three versions
are described in [9] and [10]: FCN-32s (32 pixel stride net, no skips), FCN-16s (16 pixel stride
net, skip from pool4 layer) and FCN-8s (8 pixel stride, skips fused from pool3 and pool4.
In FCN-32s, the most basic version, pool5 is the input for former fully connected layers, now
replaced with convolutions. In FCN-16s, pool4 is upsampled with transposed convolution and
later convoluted with 1 × 1 kernel for extra prediction. Similarly in FCN-8s, 1 × 1 convolu-
tion is also applied to pool3 and fused with doubly upsampled output of pool4 and conv7.
One last transposed convolution with softmax activation is necessary to obtain proper output
size. In presented experiments, FCN-8s proved to score highest and also to give most detailed
segmentation map [9], [10].

3.2.2. U-Net

Another interesting deep learning architecture for segmentation is the one named U-Net
proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015 at Medical Image
Computing and Computer-Assisted Intervention [12]. Similarly to FCN, it is made only of
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Fig. 3.5. Illustration of DAG skip connections aimed at refining coarse output

of FCN and preserving high-level information [9]

convolutional layers and again, the lack of dense layers allows it to process the input of any
size. It is also using skip connections to retain where information along with what.

The idea behind U-Net came from the medical field - one of those areas that would benefit
significantly from AI solutions allowing for automated diagnosis. At the same time, it is a
field where obtaining high quality, annotated data is expensive and often hard. This architecture
attempts to address those shortcomings and perform well when trained end-to-end on limited
data. As indicated in [12], one of the attempts to deal with a limited training set was patching
the image in a sliding window manner and using subsequent pieces of information for training.
This makes the dataset bigger and enables the network to localize. Unfortunately, at the same
time, patching can mean there is less context within the images. To add to that, training must be
performed on every patch separately, and overlapping them create much redundancy. Therefore
new architecture was proposed to overcome those shortcomings.

Looking at Figure 3.6 one can clearly understand where the name U-net comes from. The
network’s two "arms" have different purposes. The left side or contracting side is not much
different from the most widespread convolutional architectures. There 3 × 3 unpadded convo-
lutions are activated with ReLU and max-pooled with a stride that downsamples the result by
half and with every step twice as many feature channels are added. On the expansive, right side,
the feature maps are upsampled twice and then convoluted with 2 × 2 kernel. Here, with each
step, the feature channels are halved. Next follows concatenation with corresponding "level"
from the left side that is cropped to accommodate for the loss of pixels in unpadded convolution
from the left. Each step here finishes with 3×3 convolution activated with ReLU. Finally, 1×1

conv with 1 filter is used to output binary classification, but this layer can be adapted to work
with any number of classes. The number of feature channels remains big despite the fact that
it is being halved in each step in the expansive part. Thanks to them, the context information
can be propagated to higher resolution channels [12]. Because convolutions in the contracting
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Fig. 3.6. U-net architecture [12]

part are not padded, some cropping is necessary to match the dimensions along both arms of
the network. It should be noted here that for the same reason, the output image is smaller than
its input by a constant number of 188 pixels in both dimensions. By design architectures that
use no dense layers should work on arbitrary input, but here its size is constrained by the max-
pooling operations. Each of five of them cuts the image size by half in both dimensions so input
should be square and divisible by 25 = 32. Later on, the same group of researchers extended
U-net to non-binary classification and experimented with extra loss layers in lower resolution
parts and modifying "softmax" loss with Euclidean loss to better guide the net into recognizing
different categories on dental X-ray images [13]

U-net was primarily designed to segment neuronal structures on images obtained by electron
microscopy and in cell tracking challenge. In such tasks, it is particularly important to make
sure the network learns to separate individual cells rather than grouping them together. For
this reason, the authors proposed a weight map created from each ground truth image to give
more importance to separation borders and thus to enforce the net to learn them [12]. Because
of limited training instances, data augmentation was proposed. Applying rotation and elastic
deformation helps to train a model robust to such deformations. On top of that, deformation of
biological tissues is nothing unusual and such modifications yield very realistic results.

D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
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3.3. Evaluation metrics

3.3.1. Multi-label classification

In a multi-label classification problem, the prediction is not simply correct or incorrect.
To simplify the process, partially correct results could be considered incorrect. This approach,
however, can be considered harsh, as it only gives information about samples that were classified
as "fully" correct and it would not take into account cases where only one out of a few labels
was assigned correctly. Such a metric is referred to as the Exact Match Ratio.

MR =
1

ncl

ncl∑
i=1

I(Yi = Zi) (3.1)

where

Yi – predicted labels of class i

Zi – true labels of class i

For accounting for partial correctness accuracy, it is proposed to define accuracy as the count
of labels predicted correctly divided by the total count of labels for that class and averaged
across all classes. Precision, recall and F1 score can be redefined similarly.

Another approach acknowledging partial correctness would be the Hamming loss that takes
into account how many times the correct label is not predicted and how many times an incorrect
label gets predicted [14].

HammingLoss,HL =
1

kn

n∑
i=1

k∑
l=1

[I(l ∈ Zi ∧ l /∈ Yi) + I(l /∈ Zi ∧ l ∈ Yi)] (3.2)

where

I – an indicator function

HL = 0 would indicate that no labels are assigned incorrectly and no labels failed to be pre-
dicted, therefore the lower the score, the better the classification algorithm.

3.3.2. Image segmentation

Authors of Fully Convolutional Network proposed to use four metrics to assess performance
semantic segmentation. They make use of the metrics known from classification problems, but
also extend them to take into account that predicted masks may not overlap fully with ground
truth masks. All the metrics can be derived from confusion matrix C of size nc × nc where nc

is the number of classes, Cij are the pixels belonging to class i but predicted to belong to j. Cii

is then an instance of i predicted correctly, that is true a positive and ti are all class instances.
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Those metrics are:

• pixel accuracy ∑
iCii∑
i ti

(3.3)

• mean pixel accuracy
1

ncl

∑
i Cii

ti
(3.4)

• mean intersection over union (also known as mean Dice score)

1

ncl

∑
i Cii

ti +
∑

j Cji − Cii

(3.5)

• frequency weighted intersection over union

1∑
k tk

∑
iCiitii

ti +
∑

j Cji − Cii

(3.6)
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4. Depth information in computer vision systems

Until very recently cameras that enable depth acquisition were mostly found in advanced
robotic systems, however, in the last years, we can see depth sensors being more widely used in
consumer electronics as well and thus enabling more lowcost experiments to everyone. Some of
the most popular devices are several versions of Kinect for Xbox and Intel’s RealSense devices.

4.1. Depth acquisition

Methods retrieving distance information can be described as either passive or active ones. In
the passive techniques for sensing depth, depth imaging is achieved by constructing a disparity
map from stereo images. This, however, required significant computing power. Current designs
of Kinects, Intel’s and other devices rely on active methods out of which two main types of the
sensors can be distinguished:

• Time-of-flight camera

Those sensors, often encompassed in LIDAR systems, began to emerge at the beginning
of the 21st century with Z-Cam considered to be the first depth camera available. While
they do not have a very big spatial resolution, they can, in turn, provide high throughput
of up to 160 images per second. The most basic TOF emit very short light pulses that
are reflected by the objects on the scene and the delay resulting from the distance to the
object is imaged onto the sensor [15]. Used for example in Kinect 2, ASUS Xtion 2 [16].

• Structured light

Some other devices use an infra-red structured light projector and low-resolution infra-
red camera. Light from the projector in the form of small dots, invisible to human sight,
falls on surrounding objects as shown in Figure 4.1. Displacement of the dots is later
registered by an infra-red sensor which is no different from a regular camera except color
range. [17] Final values are distances to the laser-sensor plane, not to the sensor itself.
[18]. On Figure 4.1b, one can notice some shadows surrounding the objects. This comes
from the fact that they block a part of the light. If the sensor is positioned on the left of
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(a) Infra-red pattern emitted by Kinect camera [18] (b) Example of the transcoded depth image

Fig. 4.1. Emitted infra-red light and image registered by the camera

the laser, the shadow appears on the left side of the objects, because the device is unable
to estimate the distance that is not in the line of sight of the laser [18]. Used, for example,
in Kinect 1 and Intel RealSense D435 [16].

4.2. Depth processing
One of the challenges preventing new depth datasets from becoming more available men-

tioned in [19] is the need for the right processing software. As of now, there are a few libraries
that expose the device’s features to the user like Libfreenect and some libraries allowing more
advanced features - tracking, recognition, etc., but without being able to control the device itself,
for example, OpenNI or NITE [20]. Sometimes also the manufacturers launch product-specific
development software, like Kinect SDK or RealSense SDK from Intel that also includes GUI
application for monitoring the stream.

For robotics use, it can also be convenient to use rosbags to gather necessary data from more
sensors, not only images. In this option, it is the user that carries the burden of synchronizing
the frames and aligning images properly. Alignment algorithms are described better in [21] and
[22], as well as in Section 5.2. Resulting point clouds can be further processed with Point Cloud
Library.

4.3. Current applications and future development of depth
sensing
First depth sensors appeared in consumer-available electronic as an option to replace hand-

held controllers in game consoles. Using depth information for gesture tracking and recognition
together with voice commands allowed to propose gaming experience free of cables and pads.
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The idea did not gain much acclaim in the industry and was soon obsoleted. In the meantime,
Kinect gained popularity at universities and in hobbyist projects as a cheap way for experiment-
ing with new modality.

Probably the most standard and widespread use of depth is to embed it in robotics systems.
It can bring a valuable contribution when creating automation or decision making algorithms as
it adds unique information that cannot be assumed from RGB data only - it enables the robot to
receive the information about the distance to the surrounding objects, their size or shape. Many
actions such as grasping or manipulations are based on assumed geometry of objects rather than
their color or texture. Color-invariant data can provide strong shape suggestion for such actions,
especially if a robot is given task on previously unseen objects. Robots can also navigate better
knowing how far they are from obstacles, including real-time navigation.

Primarily Kinect was associated with human interaction for gaming, and as such, it is ob-
vious that some of the first applications included detection and localization of body parts in
systems like Xbox One. Apart from gaming, depth cameras are also being used in pose esti-
mation experiments, for example in [23], as a replacement or complement of motion capture
systems where wired markers or specially designed costumes can restrict natural movements.
Here, like in other applications, depth is valuable information because it is invariant to illumi-
nation or texture. Apart from that, many experiments try to employ depth maps for gestures
recognition, especially sign languages, but also hand gestures used by Italians [19]. Some other
"human-centered" tasks where depth importance is being examined include pose estimation,
face or emotion recognition, full-body person/gender recognition and tracking interaction.

The surge in depth cameras popularity is also thought to bring advances in scene reconstruc-
tion and camera tracking topics. These are usually troublesome because to obtain ground truth
poses of the camera it is necessary to employ external devices. There are attempts to bypass this
limitation with the use of synthetic data, where all aspects can be easily controlled.

Similarly, deducing six degrees of freedom pose of an object can benefit from the fact that
depth provides information on an absolute scale. This task requires finding such transforma-
tions that a 3D model obtained earlier can be fitted into the scene. Here, though, the use remains
limited, as preparing ground-truth information is laborious task - both the 3D model and infor-
mation about its pose in each image are necessary [19].

Another idea making use of the fact that depth camera readings are invariant to light changes
and color-cluttered environment is to employ depth-sensing devices in systems for pedestrian
detection. In [24] the authors experimented with images taken with Kinect from which features
are extracted with Histograms of Oriented Gradients (HOG) method and later with AdaBoost, a
classifier of ensemble type. Researchers showed that gray-scale image only can detect pedestri-
ans fairly easily, but pairs of gray-scale and depth images allowed them to achieve reduced false
positive rate and be more accurate in terms of pedestrian detection. The main drawback of this
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experiment is that it was conducted in laboratory settings. Therefore it is not sure if the results
will hold the same in the outside world where the amount of IR light sensed by the camera can
be significantly greater.

Capturing RGB-D data started with single images allowing to represent the scenes in so-
called 2.5D. Later on, videos were used to provide more information on the scene, but they still
lack some information to reconstruct it fully. According to [19], obtaining the geometry of the
whole surface and semantically annotating the surface itself is the next step in the reconstruction
challenge. What follows could be volumetric labeling for the segmentation of whole meshes to
give computers a more in-depth understanding of the scene.

Depth maps and created with them point clouds are also becoming more popular with the
rise in augmented reality. Unlike virtual reality, where the whole digital world is created from
scratch, augmented reality is faced with the problem of properly merging the real world with
computer-generated one. When processing depth maps, occlusions are parts of the scene not
visible to the camera, while in augmented reality it is necessary to occlude some objects if
the virtual ones are behind the real ones or more distant to the viewer. Doing that requires
reconstructing a model of a three-dimensional world like described above. Having it allows
creating a mask that realistically reflects occlusion. There are a few ways to do it. In the simplest
version, just a depth map can be used. In another option, a mesh is created from a point cloud
representation of the scene. Later from this mesh an occlusion mask can be created. It has to be
noted though, that creating a mesh is a fairly heavy operation to be performed in real-time on
current devices [25].

Some very recent work is also conducted in the direction of using depth cameras for facial
identification as well as emotions or expression recognition. This development, however, is
expected to rise only should this type of cameras appear more broadly in laptops or mobile
devices [19]. Indeed some recent smartphones feature Time of Flight sensors either on the front
or on the back. Yet, for now, they appear to be mainly used for blurring the background in
mobile portrait photography and to enhance camera focus in low-light scenes [26].

4.4. Datasets overview

One thing that makes use of RGB-D data research way harder than for other computer vision
tasks is for sure the lack of proper data - unlike standard image analysis, it cannot be obtained by
simply scraping the Internet or taking some photos with any camera that is within reach. Before
the launch of Microsoft Kinect devices, this was way more expensive and required skills to build
custom setups with costly 3D scanners. Such setups also had limited use, because transportation
was cumbersome.
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While standardized datasets can often oversimplify the task and provide too optimistic re-
sults, there is no better way to ensure transparency and reproducibility of the research than
conducting tests on the same dataset. Using the same input across a variety of designed algo-
rithms can also spark competitions as results are now easily comparable. Having a dataset ready
also leaves more time for actual research and experimentation and can funnel them in previously
less explored areas. In the area of deep learning, we can take into account recent advances in
transfer learning, where having a dataset even barely similar to our task can help to refine results
on our data.

With that in mind, during CVPR workshop in 2016, Michel Firman presented his work
aimed at acknowledging worthy datasets containing depth maps [19]. Apart from suggesting
resources for a variety of applications, he also evaluated them with regards to device, quantity,
and quality. Type of labeling is provided as well because there can be many types of them for
different tasks and even each application can have different labeling standards that can require
particular processing. Annotation types for semantic segmentation and reasoning include stan-
dard dense pixel labeling with or without semantics, labels on reconstructed point clouds, 3D
bounding boxes and 2D polygons. For segmentation tasks they also attempt to assess the real-
ism of the dataset, that is, whether objects were arranged in a laboratory environment, arranged
in real-world places or maybe no modifications had taken place when collecting a dataset of
real-world scenes.

For semantic segmentation some of the most widely used datasets are:

• NYU Depth (versions 1 and 2) - made of video sequences showing a variety of indoor
scenes recorded with Microsoft Kinect. Dense labeling is made in such a way that the
data can also be used in instance segmentation tasks [27]. Some RGB, color-coded depth
and semantic labels are presented in Figure 4.2

• SUN RGB-D - similar in size to PASCAL VOC, one of the biggest and most popular
dataset for visual recognition. SUN RGB-D creators attempted to create a benchmark
dataset that could be used in many tasks, from semantic segmentation, detection and pose
estimation to total scene understanding. A few different devices were used in the creation
process so extracted features can be invariant with regards to device intricacies [28]

• B3DO: Berkeley 3-D Object Dataset - crowdsourced dataset with bounding box annota-
tions, aimed for category recognition in three dimensions [29]. It appeared few a years
earlier than NYU and SUN
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Fig. 4.2. Densely segmented samples from NYU Depth Dataset V2 [30]

4.5. Including depth in deep learning tasks

While depth maps after some preprocessing can be treated as images, they rarely convey
the same message. Objects can be distinguished easier, but texture or color information is gone.
Moreover, the distance range of RGB cameras is significantly bigger than their counterparts.
Including depth data in image processing pipelines in such a way that they contribute best to
the final result is still a topic under research. Nonetheless, some solutions appear to be more
popular than others.

The simplest approach would be to treat depth map as extra, fourth channel and simply
append it to a 3-channel RGB image. It was featured in FCN evaluation on NYUD v2 dataset
but yielded only moderately better results than RGB alone: for FCN-32s model trained on RGB
pixel accuracy and mean intersection over union was, respectively, 60.0 and 29.2 whereas for
4-channel RGB-D model it was 61.5 and 30.5. The hypothesis provided to explain this low
improvement is that the network experiences some difficulties with gradient propagation [10].

4.6. Fusion of modalities

Eventually, it appeared to be widely acknowledged that learning features for color and depth
images would be more effective when done separately. This allows for extracting features that
are highly specific to their modalities. Two models would be later fused together in one of the
bottom layers to provide the desired output. Such an approach can also make use of transfer
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(a) Early fusion (b) Late fusion

Fig. 4.3. Early and late fusion comparison [32]

learning if it was not for the problem of finding pre-trained weights for depth segment. For
this reason, it is not uncommon to see the same weights used in both parts of the model for
intra-modal transfer in the RGB part and cross-modal transfer in the depth part [31].

Ionescu et al. described two ways of fusing multimodal computer vision systems. In early
fusion, the classification is performed on features fused from all modalities. On the contrary, in
late fusion, each feature set has its own classifier and their predictions are later summed. The
difference between the two approaches is better shown in Figure 4.3 Authors also mention that
other ways of combining classifiers such as product, max, mean or median were reported but
using sum appears to be less sensitive to classification errors [32]. Late fusion was also used in
[9] with better results than modifying the architecture to take four-channel data.

4.7. HHA depth encoding

A novel approach to depth maps was proposed by Gupta et al. in [33] and later evaluated
also in [34]. In those works, a new, geocentric embedding is proposed that allows for encoding
depth in three channels manner. Each pixel of the depth map is therefore expressed as:

• horizontal disparity

• height above ground

• angle between the local surface normal and inferred gravity direction

The channels are later scaled to range from 0 to 255. As it can be observed in Figure 4.4, the
objects on HHA images can be easily recognized which confirms that encoding is analogous to
RGB representation [31].

It might seem that such an idea runs contrary to the main principle of deep learning saying
that the features should be self-learned rather than calculated apriori. The authors, however,
explain that it is highly unlikely that the network could be trained to calculate such properties,
especially in cases when the training dataset is limited [34]. Furthermore, as already mentioned,
this new encoding appears to provide certain similarities to RGB images thus allowing HHA
networks to be fine-tuned with model weights from RGB tasks.
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Fig. 4.4. Comparison of RGB and HHA encoded depthmaps [31]

4.8. Is depth really needed

The works quoted so far state unanimously that depth indeed provides relevant information
that supports various algorithms and allows them to achieve better results. This may not be the
case in all scenarios - depth sensors have their limitations but also the environment, for which
the models are being developed, can be such that using another modality does not provide
expected benefits. This was examined in Depth Not Needed - An Evaluation of RGB-D Feature

Encodings for Off-Road Scene Understanding by Convolutional Neural Network [35].
Here the authors did not use time-of-flight or structured light cameras, but stereo dispar-

ities obtained by two methods: Semi Global Block Matching and Adaptive Support Weights.
Five variations of depth encoding were subject to test. They were normalized to 0 - 255 range
and stacked together with RGB channels. Such input was then fed to SegNet encoder-decoder
architecture, modified to accommodate additional channels to provide classification at pixel-
level. The dataset is comprised of images from the off-road trip in the center of England and
labeled into categories such as grass, tree, sky or water so objects that may not have well-defined
boundaries or a specific shape.

Classification results presented in this paper showed that depth in the form of stereo dispar-
ities provide little to no improvement in comparison with RGB only. This indicates that depth
may be of higher importance in indoor scenarios, where it is easier to find well-defined objects
that can be classified without doubts. Another thing to consider is that overall segmentation
results were very good, so achieving even slightly better performance is quite difficult [35].
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5. Creating experimental dataset

5.1. Intel Euclid Realsense camera

All RGB and depth data used for the purpose of this project were made using Intel Euclid
Development Kit (Figure 5.1a). It is an all-in-one computer with Intel Atom x7-8700 Quad-Core
processor, 4GB memory, 32GB storage, WiFi and Bluetooth for wireless communication and
various sensors such as inertial measurement unit (IMU), proximity sensor, barometric pressure
sensor, and GPS. The device has preinstalled Ubuntu and Robot Operating System (ROS) and
after connecting an external screen and mouse or keyboard, it can be used out of the box. Apart
from RGB and fisheye camera, it has ZR300 depth camera in RealSense technology with depth
range of 0.55m to 2.8m [36]. In Figure 5.1b cameras placement can be observed.

For other cameras in the RealSense series, Intel published software development kit, un-
fortunately, it is not compatible with Euclid device despite using a camera from this series. In
turn, Euclid can be operated using a web interface from other PC after connecting to its network
or connecting the device to the same network. In the web interface, the user can choose some
predefined scenarios such as cameras, turtlebot or person follower that start a set of sensors
and execute predefined Euclid nodes. Nodes are in fact ROS launch files and their role is to
provide an abstraction to Euclid’s automation layers [36]. It is also possible to create one’s own

(a) Euclid device
(b) Camera placements on the device

Fig. 5.1. Intel Euclid Development Kit [36]
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scenarios and configure them to be able to run them from the browser. While the scenario is
running, the user can switch to the "Monitor" tab to have a look at what the device is registering
- sensors that can be monitored here are: color, depth, person tracking, fisheye, IMU (gyroscope
and accelerometer), trajectory. Some parameters of the nodes can be also dynamically changed
from the respective tab. The device can be also operated remotely via SSH [36].

5.2. Experiment conditions
To create a dataset for this project, a set of objects was selected. The main criteria were

that a few items of the same category could be collected (i.e. different color, size, slightly
altered shape, etc.) and that they are big enough to be easily distinguishable on the depth image.
The sensor produces quite noisy output and for this reason objects like pens or tiny toys were
excluded after some initial experiments.

To save the images, a PC was connected to the network created by Euclid device and the
"Cameras" scenario was started that launches color and depth cameras. The distance measure-
ment unit is millimeters, so the range of the image created from the sensor is too big to be
displayed properly. For this reason, the depth map that can be observed on Euclid’s web inter-
face is transcoded to the range of 0 - 255. To save both raw and transcoded versions along with
color images, ROS utilities present in the device were used. Rosbag is a package of tools that
enables to record data from ROS topics in the form of bags that are nothing else than robot logs
[37]. Five seconds long streams were saved for each situation using an appropriate command
with Euclid accessed over SSH.

To extract necessary data from rosbags, Matlab R2019a was used. Extracted topics were:

• /camera/color/image_raw

• /camera/depth/image_raw

• /camera/depth/image_transcoded

It is worth noting that depth images are uint16 so map scale is 0-65535 mm or 0-65.535m.
This is different from other cameras such as Kinect, that use uint16 and need additional
calculations to obtain the result in meters.

5.3. Image preprocessing

5.3.1. Image registration

Whenever two cameras are used to prepare pairs of the depth map and RGB image, it has to
be taken into account that they have different parameters and they are placed in some distance
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(a) Example of RGB image (b) Depth map of the same scene in transcoded units

Fig. 5.2. Example of displacement between fields of view in Intel Euclid cam-

era

from one another. For this reason, their perspective differs a bit. The example is shown in Figure
5.2. We can see there that depth map is showing slightly different scene - teddy bear on the
left appears to be a few centimeters away from the left border of the picture, while on the
color image it is touching the border. The operation of aligning the two images is also called
registration, and the process is virtually the same regardless if frames to align are two color
images or color and depth map.

Some software development kits like OpenNI (for Kinect) or Intel RealSense SDK provide
tools to perform the registration while reading from the stream of data. As mentioned before,
RealSense could not have been used so the process was performed by the author of the project
based on information in [22] and [21] and is described below.

Image registration requires us to know beforehand some information about both cameras,
that is their intrinsic and extrinsic. Intrinsic describe cameras themselves:

1. their focal lengths (in pixel units): fxrgb, fyrgb, fxd, fyd

2. their optical centers: cxrgb, cyrgb, cxd, cyd

Meanwhile by extrinsic, we mean values that which describe how one camera is related to the
other. Those are:

1. 3× 3 rotation matrix R

2. 3× 1 translation vector T

Another often used convention is to present extrinsic as a 4× 4 matrix as in 5.1:

extr =


R0 R1 R2 T0

R3 R4 R5 T1

R6 R7 R8 T2

0 0 0 1

 (5.1)
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All parameters mentioned above can be obtained from a configuration file saved
on the device’s hard drive or they can be read by subscribing messages from topics
/camera/color/camera_info and /camera/depth/camera_info from rosbags.
In the config file, values are straightforwardly, while in the subscribed messages, the values of
T and intrinsics can be read from projection matrix P (See 5.2).

P =

fx 0 cx T0

0 fy cy T1

0 0 0 T2

 (5.2)

It is also necessary to convert depth map values into meters - in case of Euclid that means
dividing each value by 1000.

Now each (xd, yd) pixel from depth map can be projected to a point in three-dimensional
metric space with formula 5.3:

xP3D = (xd − cxd) · depth(xd, yd)/fxd

yP3D = (yd − cyd) · depth(xd, yd)/fyd

zP3D = depth(xd, yd)

(5.3)

where

(xP3D, yP3D, zP3D) – P3D point coordinates in 3D metric space

Then it is necessary to apply rotation matrix R and translation vector T as in Equation 5.4
to get this point coordinates in 3D space associated with the RGB image.

P3D′ = R · P3D + T (5.4)

Now point P3D′ can be projected back to (xrgb, yrgb) location in RGB camera using color
camera intrinsics (Equation 5.5. Some kind of interpolation is necessary when doing that, as
calculated values of (xrgb, yrgb) may not be of integer type. Here simple "nearest neighbor"
approach was used by rounding the locations to nearest integer.

xP2D = (xP3D′ · fxrgb/zP3D′) + cxrgb

yP2D = (yP3D′ · fxrgb/zP3D′) + cyrgb
(5.5)

where

(xP2D, yP2D) – coordinates of depth map pixel mapped to RGB color space

With all that done, it is necessary to handle invalid values or occlusions that appear because
not all parts of the depth map are visible to the color camera. To do that if pixel coordinates
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(a) RGB image (b) Depth map not registered to the image

(c) Depth map after registration (d) Depth map with replaced invalid values

Fig. 5.3. Depth registration and inpainting

were negative or bigger than the width or height of the image, they were ignored. The effects of
performed registration can be observed in Figure 5.3. Unfortunately as can be seen in Figures
5.3b and 5.3c the process is introducing some loss of information. This is a result of handling
occlusions, and because fields of view of the two cameras cover slightly different scenes, they
also have different properties, such as focal lengths.

Two optional steps can be done prior to image registration:

1. cameras can be recalibrated with use of checkerboard

2. images can require rectification

Here recalibration was not performed and per information in [38], images are rectified by Eu-
clid’s hardware component before being sent further so the only necessary step was to perform
registration.
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5.3.2. Depth inpainting

Later it was required to remove invalid values present on the depth maps. As said before, the
maximum depth value as given by uint16 format is 65.535 meters, but the range indicated by the
manufacturer is 0.55 - 3 meters. At the same time, images contain invalid values caused by the
occlusion that is impossible to avoid with the method that the camera uses. It can be observed in
Figure 5.3c that image quality suffers from both described issues - zero-values from occlusion
and huge values of depth impossible to be registered with any available sensor.

For this reason, manual inpainting of invalid depth values was done in two steps outlined
below. It is by no means the most elegant solution nor is it providing the best results. Depth
inpainting is a broad subject that is outside of the scope of this work.

Depth inpainting consisted of removing:

1. Overly distant points:

Values indicating distance bigger than 3 meters were replaced with a median value of the
row that they appeared in. A masked median is chosen, in order to exclude zeros when
calculating the median.

2. Zero points:

Those values are more common than points indicating an enormous distance from the
object. In those cases, a 8×8 window surrounding this point was selected, and the masked
median was calculated. If it turned out to be an invalid value, then the masked median for
the whole row was calculated. Finally, if that was also incorrect value, then the median
value of the whole image was inserted.

5.3.3. Depth encoding

Removing incorrect values as described above is also necessary to perform HHA depth
encoding mentioned earlier in Section 4.7. It was done using Python implementation created by
Cheng Xiaokang and available at [39]. Some of the results are demonstrated in Figure 5.4.

5.4. Dense semantic labelling

Segmentation maps were created with Supervisely [40] web application because it has ad-
vanced labeling tools, simple interface and can be accessed remotely once the dataset is up-
loaded. It can also be used for collaboration when labeling needs to be shared, but in this case,
images were annotated solely by the author of this work. Created segmentation maps were saved
as JPEG files. Figure 5.5 shows the interface of Supervisely.
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Fig. 5.4. HHA-encoded images
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Fig. 5.5. Interface of Supervisely web application to annotate images

Pictures were taken in such a location that the background does not interfere too much with
objects planned for segmentation, that is - on the floor. Each of the preselected objects was
subjected to a few photos with different location and distance to the camera. There are also
images with more than one objects both from the same and different classes but differentiating
between instances is not in the scope of this work. There are six categories of objects in total.
As it is shown in Figure 5.6, the dataset is not balanced both in terms of class counts and per
percentage of pixels belonging to each class. The whole dataset is comprised of 121 images
taken at two locations.

5.5. Data split and augmentation
The images are later split randomly into three subsets: training (60% - 72 images), valida-

tion (20% - 24 images) and test (remaining 25 images). The seed is used in the splitting function
to ensure reproducibility. As the dataset is small compared to publicly available datasets, it was
decided to employ data augmentation. The process uses various transformations to obtain new
images while preserving their labels. Figure 5.7 is presenting some examples of such transfor-
mation, but they may not be exactly the same images that were used for training the models as
new images are generated randomly on-the-fly and fed to the model in the training phase. Here
also a seed is used to ensure that images and masks are transformed in the same way and that
each model is trained on the same data. Chosen augmentation parameters were:

• rotation range: 30 degrees

• zoom range: 0.15

• width shift: 0.2
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(a) Number of objects of each category (b) Percentage of area for each class

Fig. 5.6. Dataset statistics, based on information from Supervisely

• height shift: 0.2

• shear range: 0.15

• enabled horizontal flip
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Fig. 5.7. Examples of data augmentation
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6. Experiments and results

6.1. Implementation and training details
All networks described below were prepared using Tensorflow, version 1.14.0 mostly

through its high-level Keras API [41]. Metrics outside of tensor scope were formulated with
Numpy [42] and scikit-learn [43]. Code repository was stored on Google Drive and from there
imported to Colab environment. Colab is essentially a Jupyter notebook hosted in a cloud and
can be run from the browser without the need to install any extra software locally. The main
advantage of using Colab over locally installed Anaconda/Jupyter notebook is that the user is
given various runtimes to be used for free: CPU, GPU, and TPU. All models below are trained
using Colab’s NVIDIA Tesla K80 GPU with 2495 CUDA cores and 12 gigabytes VRAM.

6.2. Image recognition
As prepared images often contain more than one category of an object, the problem to solve

would be that of multi-label classification. To test the impact of including distance information
to the recognition problem, various approaches were examined.

Firstly, AlexNet was implemented with single input RGB as the baseline, two input versions
of early and late fusion to be tested on RGB+D and RGB+HHA inputs. In early fusion, the
features are concatenated after flattening but before fully connected layers. In late fusion, the
outputs of the classification layer are summed. Later an attempt was given to classify images
with VGG model in the same combinations.

As suggested in [44], sigmoid activation is used in the final layer of each net and binary
cross-entropy is used as loss function, but other options, such as tanh activation with hinge loss
are also possible. The threshold of 0.5 was set to make predictions on the test set.

Unless otherwise stated, each version is trained with a batch of eight for 20 epochs with
Adam optimizer with a learning rate of 0.0001. The learning rate is halved if no improvement
comes for seven epochs. Exact match ratio is monitored and the best result is saved for later
inference. Hamming loss and accuracy, as defined in Section 3.3.1, are reported for each variant
in Table 6.1.
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Early while working on the recognition problem it became apparent that it is hard to achieve
good results with the prepared dataset therefore heavy data augmentation was applied - here the
training dataset is amplified eightfold. Unfortunately, that did not help with overfitting. Dropout
and L2 regularization on layer activity was tested but did not give better results.

Problems also appeared when using the more complex net - VGG. In this case, the net was
not learning anything new and simply predicting "box" on every image. To "unlock" learning,
pre-trained weights from [45] were used on RGB input and other modalities were learned from
scratch. Results of the best classification for AlexNet are shown in Figure 6.1

Fig. 6.1. Results of AlexNet early fusion of RGB and HHA data
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Table 6.1. Image classification results

Network Input Accuracy score Hamming loss

Alexnet RGB 0.16 0.23
Alexnet

early fusion RGB, D 0.20 0.21
Alexnet

early fusion RGB, HHA 0.32 0.15
Alexnet

late fusion1 RGB, D 0.20 0.27
Alexnet

late fusion RGB, HHA 0.16 0.21

VGG2 RGB 0.60 0.09
VGG2 early fusion RGB, D 0.52 0.11
VGG2 early fusion RGB, HHA 0.56 0.12
VGG2 late fusion RGB, D 0.40 0.13

VGG1,2 late fusion RGB, HHA 0.40 0.15

1 lower learning rate: 0.00001 instead of 0.0001
2 using pretrained weights for RGB
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6.3. Semantic segmentation

For semantic segmentation, a similar approach was followed - two architectures are imple-
mented: Fully Convolutional Networks and U-Net. Modalities fusion for FCN is implemented
as discussed in [9] and [32] - in late fusion, softmax is applied to each modality separately and
later summed, while in early fusion the modalities are concatenated before 4096-filters convo-
lutions.

The baseline version of U-Net was implemented as presented in [12] and in Figure 3.6,
different to the original model is the use of zero-padded convolutions to avoid shrinking output
map and the change in the number of filters in the last layer for multi-class output. As initial
runs showed the network was overfitting, a dropout of 0.3 was introduced after every block on
the left side of the U.

Different ways of fusing depth are proposed for U-Net than for FCN. In the first approach,
only left "arms" of the U are kept separate. Subsequent outputs up to the bottom dropout are
concatenated in a pair-wise manner and later used in the expanding part. The intuition behind
this is that different features could be extracted from two inputs, but they could be used together
to upsample segmentation map. This version can appear similar to the one presented by Dolz et
al. in [46], except it is not densely connected, and there are no Inception modules. In the second
version, each modality is passed through its own U-shaped network. Outputs are later concate-
nated and passed together through two more Conv layers to obtain the final result. Figures in
Appendix A show two fusions more clearly.

Here seven classes are predicted, not six like in previous experiments because the back-
ground is treated as a separate category. Initially, mean Dice loss equal to 1−mIoU as defined
in Eq. 3.5 was used for training and validation, but it turned out that it would quickly saturate
and after a few epochs, the learning would become very slow regardless of the changes in the
learning rate.

In this case batch of four images is used every time as a consensus between training time
that is smaller for bigger batches and more frequent updates to the gradient coming from smaller
batches. This is also due to the fact, that segmentation models have more parameters, and a
bigger batch would often exceed Colab’s available RAM. The training dataset is augmented in
such a way that there are twice as many images used.

All models were trained with categorical cross-entropy with Adam optimizer set to the start-
ing learning rate of 0.0001. If validation loss did not improve for five consecutive epochs then
the rate was halved. Learning and validation losses can be observed in Figures 6.2 and 6.3.

For comparison purposes training is conducted for 50 epochs, but the model is kept only if
results improved comparing to the previously saved state. Therefore, the inference on the test
set is done using the best parameters that were achieved during the training.
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Models are evaluated using four metrics described in Section 3.3.2, but due to large areas
marked as background, pixel accuracy and frequency weighted intersection over union do not
provide the most beneficial insights. Results for all models are presented in Table 6.2 and de-
tailed results for each label can be found in Appendix B and C for FCN and U-Net respectively.
Segmentation masks compared to ground truth for two best models are shown in Figure 6.4

Table 6.2. Results for all semantic segmentation models

Network Input
Pixel

accuracy
Mean

pixel accuracy
Mean IoU

Frequency
weighted IoU

FCN RGB 0.896 0.279 0.230 0.879
FCN HHA 0.878 0.148 0.131 0.877

FCN stack RGB, D 0.941 0.428 0.363 0.916
FCN

early fusion RGB, D 0.951 0.489 0.408 0.928
FCN

early fusion RGB, HHA 0.928 0.413 0.337 0.897
FCN

late fusion RGB, D 0.943 0.429 0.375 0.919
FCN

late fusion RGB, HHA 0.892 0.208 0.190 0.877

U-Net RGB 0.964 0.693 0.618 0.94
U-Net HHA 0.915 0.273 0.246 0.894
U-Net

channel stack RGB, D 0.956 0.534 0.450 0.935
U-Net

fusion 1 RGB, D 0.948 0.536 0.440 0.923
U-Net

fusion 1 RGB, HHA 0.955 0.611 0.517 0.927
U-Net

fusion 2 RGB, D 0.959 0.627 0.555 0.936
U-Net

fusion 2 RGB, HHA 0.95 0.51 0.432 0.928
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6.4. Discussion of the results

6.4.1. Recognition

Initially, the task of object recognition appeared to be an easier task of the two, as the desired
output is significantly simpler than that of segmentation. The experiments proved otherwise - it
was hard to obtain tolerable loss values throughout the training and in some trials, the nets would
prefer to safely predict one, the most frequent category. The reason for that may be coming from
the dataset, that was not robust enough to train such complex architecture. Transferring weights
for VGG partially helped with that problem.

Understandably, comparing AlexNet trained from scratch to pre-trained VGG is not justi-
fied. It is, however, interesting to notice that in the case of VGG no form of including depth is
beneficial, it is actually predicting mode labels incorrectly. On the other hand - when training
AlexNet with distance encoded as HHA, improvement is noticeable, but the simple depth map
is not helping. It is, therefore, possible that depth in the form of three-channel HHA can boost
image recognition when both modalities are learned alongside each other. Although considered
to require less feature extraction, the depth is not relevant when the RGB model is given the
advantage of transferring the knowledge from other models.

6.4.2. Semantic segmentation

Most of the setups evaluated in semantic segmentation showed no significant overfitting.
When the architecture of choice is Fully Convolutional Net, distance inclusion can indeed yield
better results - 0.408 mIoU for an early fusion of RGB and depth compared to 0.279 mIoU for
the baseline model. Nonetheless, the impact of depth vanishes when a more complex model is
used, as baseline U-Net outperforms every other version tested, both of FCN and U-Net.

One important thing to note is that the learning rate and the number of epochs were set the
same for easy comparison, but it seems that FCN would benefit from slightly faster learning and
more epochs. In contrast, U-Nets reach plateau a few epochs before the end of the training. This
is not surprising when comparing the number of parameters to optimize - single input FCN has
about 134 million parameters while single input U-Net - only 34 million.
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Fig. 6.2. FCN test and validation losses
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Fig. 6.3. U-Net test and validation losses
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Fig. 6.4. Segmented masks for two best models
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D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
using deep learning



7. Future work and conclusion

7.1. Future work
By no means does this work exhaust the subject of using multimodal data in deep learning.

Except for the obvious - extending the dataset, some of the possible options could include
ensemble learning, where adding the results like in late fusion described above is replaced with
voting. Similarly, late- and early-fusion could be put into one, large ensemble to make the best
use of both approaches. Nevertheless, this would have to be preceded with a very clever design,
as the model to train would grow significantly. There also remain some other fusion ideas that
could be investigated when it comes to U-Net. Finally, taking inspiration from Inception nets,
using embeddings for depth could bring some interesting results.

7.2. Conclusion
This thesis sought to answer the question of whether incorporating information about the

distance to the object can bring significant improvements with regards to image recognition
and semantic segmentation. To fulfill this task, a dataset of RGB-D images was collected using
the Intel Euclid Development kit. Images were later preprocessed and labeled. Depth was also
converted to HHA values that allows it to be used as a three-dimensional feature map.

In both recognition and segmentation, state-of-the-art architectures were implemented. As
their usual objective is to classify RGB images, some modifications were made that allowed
to incorporate depth into the architecture either as raw distance information or in the encoded
form. Two-input, one-output fusion models based on them were prepared to evaluate cases in
which feature extraction is done separately on modalities in late and early fusion modes.

Firstly, AlexNet and VGG networks were prepared for image recognition. The former was
trained from the ground up while the latter used transferred weights. In the case of AlexNet, the
small improvement was shown when incorporating depth, however, the case of VGG showed
that this extra information was not strong enough to positively impact the outcome.

Later, Fully Convolutional Network and U-Net were prepared. While FCN has already been
reported to be used in a multi-modal setting with depth and HHA, depth fusion has not been
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found to be tested in U-Net. Therefore, two approaches to fusion in U-Net were proposed and
tested. Indeed, in FCN models, using second modality improved mean intersection over union
and mean pixel accuracy scores. Yet, a similar impact was not observed in U-Net. On the con-
trary, while baseline U-Net outperformed any FCN variant, incorporating depth only deterio-
rated the results.

Given the above, it is hard to answer definitively whether depth can boost the performance
of recognition and semantic segmentation when deep learning techniques are used. In some
settings, the impact is noticeable, however similar or better results can be achieved with a more
sophisticated architecture trained only on RGB images. It is possible that some industries would
still benefit greatly even from the relatively small improvement and will be willing to bear
the cost of longer learning time. In most cases, though, it appears that the gain may not be
proportional to the resources spent in the process.
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D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
using deep learning



Bibliography

[1] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited, 2016.

[2] A comprehensive guide to convolutional neural networks—the eli5 way, https : / /

towardsdatascience.com/ a-comprehensive-guide- to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53, [Online; accessed 14-May-2019].

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks”, in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http :

//www.deeplearningbook.org.

[5] J. Brownlee, A gentle introduction to the ImageNet challenge (ILSVRC), https : / /

machinelearningmastery . com / introduction - to - the - imagenet - large - scale - visual -

recognition-challenge-ilsvrc/ , [Online; accessed 22-May-2019].

[6] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions”, in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition”, arXiv preprint arXiv:1409.1556, 2014.

[8] Review: FCN—fully convolutional network (semantic segmentation), https : / /

towardsdatascience.com/ review- fcn- semantic- segmentation- eb8c9b50d2d1, [Online;
accessed 14-May-2019].

[9] J. Long, E. Shelhamer, and T. Darrell, in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2015, pp. 3431–3440.

[10] E. Shelhamer, J. Long, and T. Darell, “Fully convolutional networks for semantic seg-
mentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 4, pp. 640–651, 2017.

[11] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning”, arXiv

preprint arXiv:1603.07285, 2016.



54 BIBLIOGRAPHY

[12] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation”, in Medical Image Computing and Computer-Assisted Intervention

(MICCAI), ser. LNCS, (available on arXiv:1505.04597 [cs.CV]), vol. 9351, Springer,
2015, pp. 234–241.

[13] O. Ronneberger, P. Fischer, and T. Brox, “Dental x-ray image segmentation using a u-
shaped deep convolutional network”, ISBI, 2015.

[14] M. S. Sorower, “A literature survey on algorithms for multi-label learning”,

[15] Time-of-flight camera, https:// en.wikipedia.org/ wiki/ Time-of-flight_camera, [Online;
accessed 04-May-2019].

[16] Depth sensors comparison, http:// docs.ipisoft.com/ Depth_Sensors_Comparison, [On-
line; accessed 04-May-2019].

[17] A. McWilliams, How a depth sensor works - in 5 minutes, https:// jahya.net/ blog/ how-

depth-sensor-works-in-5-minutes/ , [Online; accessed 04-April-2019], 2013.

[18] A. M.R., J. T., L. P., et al., “Kinect depth sensor evaluation for computer vision applica-
tions, technical report ece-tr-6”, Aarhaus University, Tech. Rep., 2012.

[19] M. Firman, “RGBD Datasets: Past, Present and Future”, in CVPR Workshop on Large

Scale 3D Data: Acquisition, Modelling and Analysis, 2016.

[20] Libfreenect vs OpenNI, https:// stackoverflow.com/ questions/ 19181332/ libfreenect-vs-

openni, [Online; accessed 21-May-2019].

[21] Align depth and color frames – depth and RGB registration, https:// www.codefull.org/

2016/03/align-depth-and-color-frames-depth-and-rgb-registration/ , [Online; accessed
21-April-2019].

[22] Kinect calibration, http:// nicolas.burrus.name/ index.php/ Research/ KinectCalibration\

#tocLink6, [Online; accessed 10-April-2019].

[23] S. Huh and G. Kim, “Human pose estimation from depth image using visibility estima-
tion and key points”, in International Conference on Digital Human Modeling and Ap-

plications in Health, Safety, Ergonomics and Risk Management, Springer, 2013, pp. 333–
342.

[24] W.-C. Cheng, “Pedestrian detection using an RGB-depth camera”, in 2016 International

Conference on Fuzzy Theory and Its Applications (iFuzzy), IEEE, 2016, pp. 1–3.

[25] Why is occlusion in augmented reality so hard?, https : / / hackernoon . com / why - is -

occlusion- in - augmented- reality - so- hard- 7bc8041607f9, [Online; accessed 21-May-
2019].
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B. Per-class results for FCN models

Table B.1. Per-class results for FCN models

Network Input class IoU precision recall F1 score

FCN RGB

background 0.922 0.926 0.996 0.96
furby 0.049 0.092 0.096 0.094
man 0.017 0.053 0.025 0.034
box 0.1 0.484 0.112 0.182
mug 0.082 0.246 0.11 0.152
car 0.244 0.422 0.367 0.393

bear 0.193 0.461 0.25 0.324

Unet RGB

background 0.882 0.882 1.0 0.937
furby 0.002 0.018 0.002 0.004
man 0.001 0.029 0.001 0.003
box 0.008 0.237 0.008 0.015
mug 0.002 0.035 0.002 0.004
car 0.002 0.057 0.003 0.005

bear 0.022 0.564 0.022 0.043

FCN
stack

RGB, D

background 0.96 0.967 0.992 0.979
furby 0.033 0.094 0.048 0.064
man 0.027 0.15 0.032 0.053
box 0.66 0.783 0.807 0.795
mug 0.054 0.204 0.069 0.103
car 0.296 0.456 0.457 0.457

bear 0.512 0.798 0.588 0.677
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Table B.1 Per-class results for FCN models, continued

Network Input class IoU precision recall F1 score

FCN
early
fusion

RGB, D

background 0.969 0.981 0.988 0.984
furby 0.02 0.091 0.024 0.039
man 0.014 0.123 0.015 0.027
box 0.634 0.731 0.827 0.776
mug 0.099 0.443 0.113 0.18
car 0.402 0.534 0.62 0.574

bear 0.716 0.831 0.838 0.834

FCN
early
fusion

RGB,
HHA

background 0.958 0.969 0.988 0.978
furby 0.02 0.037 0.041 0.039
man 0.041 0.081 0.076 0.078
box 0.502 0.827 0.56 0.668
mug 0.069 0.138 0.12 0.128
car 0.239 0.32 0.485 0.385

bear 0.53 0.782 0.622 0.693

FCN late
fusion

RGB, D

background 0.956 0.963 0.993 0.978
furby 0.039 0.135 0.052 0.075
man 0.026 0.25 0.028 0.05
box 0.577 0.8 0.675 0.732
mug 0.043 0.442 0.046 0.083
car 0.363 0.721 0.422 0.532

bear 0.623 0.746 0.791 0.768

FCN late
fusion

RGB,
HHA

background 0.893 0.896 0.997 0.944
furby 0.008 0.16 0.009 0.017
man 0.0 nan 0.0 nan
box 0.101 0.717 0.105 0.183
mug 0.001 0.065 0.001 0.003
car 0.079 0.596 0.083 0.146

bear 0.246 0.806 0.262 0.395

D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
using deep learning



C. Per-class results for U-Net models

Table C.1. Per-class results for U-Net models

Network Input class IoU precision recall F1 score

U-Net RGB

background 0.975 0.983 0.991 0.987
furby 0.439 0.954 0.449 0.61
man 0.47 0.834 0.518 0.639
box 0.726 0.873 0.812 0.842
mug 0.306 0.452 0.487 0.469
car 0.662 0.903 0.713 0.797

bear 0.745 0.826 0.885 0.854

U-Net HHA

background 0.925 0.927 0.998 0.961
furby 0.0 nan 0.0 nan
man 0.0 nan 0.0 nan
box 0.358 0.645 0.447 0.528
mug 0.0 nan 0.0 nan
car 0.023 0.137 0.026 0.044

bear 0.418 0.905 0.438 0.59

U-Net
fusion 1

RGB, D

background 0.976 0.983 0.992 0.988
furby 0.208 0.472 0.272 0.345
man 0.189 0.738 0.202 0.317
box 0.548 0.844 0.61 0.708
mug 0.241 0.56 0.297 0.388
car 0.309 0.436 0.514 0.472

bear 0.607 0.668 0.869 0.755
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Table C.1Per-class results for U-Net models, continued

Network Input class IoU precision recall F1 score

U-Net
fusion 1

RGB,
HHA

background 0.972 0.986 0.986 0.986
furby 0.336 0.678 0.4 0.503
man 0.172 0.937 0.174 0.294
box 0.652 0.747 0.838 0.79
mug 0.288 0.575 0.367 0.448
car 0.569 0.764 0.69 0.725

bear 0.626 0.722 0.825 0.77

U-Net
fusion 2

RGB, D

background 0.972 0.976 0.996 0.986
furby 0.344 0.586 0.455 0.512
man 0.349 0.809 0.38 0.517
box 0.678 0.817 0.8 0.808
mug 0.276 0.585 0.344 0.433
car 0.594 0.824 0.679 0.745

bear 0.67 0.882 0.736 0.803

U-Net
fusion 2

RGB,
HHA

background 0.972 0.978 0.994 0.986
furby 0.341 0.574 0.457 0.508
man 0.098 0.724 0.102 0.178
box 0.572 0.715 0.74 0.727
mug 0.002 0.172 0.003 0.005
car 0.415 0.823 0.456 0.587

bear 0.622 0.722 0.819 0.767

D. Kwaśny Analysis of significance of depth in recognition and semantic segmentation of images
using deep learning


